

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS)

 $Siddharth\ Nagar,\ Narayanavanam\ Road-517583$

OUESTION BANK (DESCRIPTIVE)

Subject with Code: PROBABILITY, NUMERICAL METHODS AND TRANSFORMS (19HS0832)

Course & Branch: B.Tech - EEE

Year &Sem: II-B.Tech. & I-Sem. Regulation: R19

UNIT -I PROBABILITY

1. a)	A class consists of 6 girls and 10 boys. If a committee of 3 is chosen at random from		
	the class, find the Probability that (i) 3 boys are selected (ii) Exactly 2 girls are		
	selected.	[L1][CO1]	[6M]
b)	Two cards are selected at random from 10 cards numbered 1 to 10. Find the	. 11 1	
	probability that the sum is even if (i) The two cards are drawn together. (ii) The two		
	cards drawn one after other with replacement.	[L1][CO1]	[6M]
2. a)	In a group there are 3men and 2 women. Three persons are selected at random from	[21][001]	LOTIT
2. (a)	this group. Apply the probability that one man and two women or two men and one		
	women are selected.	[L3][CO1]	[6M]
b)	Five persons in a group 20 are engineers. If three persons are selected at random,		[UIVI]
0)	determine the probability that all engineers and the probability that at least one being		
		II 511CO11	[6M]
2 ->	an engineer.	[L5][CO1]	[UIVI]
3. a)		II 211CO11	[4]
1.	probability that (i) All are not good (ii) Two are not good	[L3][CO1]	[6M]
b)	Three students A, B, C are in running race. A and B have the same Probability of		
	winning and each is twice as likely to win as C. Find the Probability that B or C	FT 43FGG 43	F () ()
	wins.	[L1][CO1]	[6M]
4. a)	From a city 3 news papers A, B, C are being published. A is read by 20%, B is read		
	by 16%, C is read by 14% both A and B are read by 8%, both A and C are read by		
	5% both B and C are read by 4% and all three A,B,C are read by 2%. Find out the		
	percentage of the population that read at least one paper	[L1][CO1]	[6M]
b)	What is the probability that a card drawn at random from the pack of playing cards		
	may be either a queen or a king?	[L1][CO1]	[6M]
5. a)	A class has 10 boys and 5 girls. Three students are selected at random one after		
	another. Use the probability for (i) First two are boys and third is girl. (ii) First and		
	third are of same sex and the second is of opposite sex.	[L3][CO1]	[6M]
b)	Two marbles are drawn in succession from a box containing 10 red, 30 white, 20		
	blue and 15 orange marbles, with replacement being made after each draw. Find the		
	probability that (i) Both are white (ii) First is red and second is white.	[L1][CO1]	[6M]
6. a)	In a certain town 40% have brown hair, 25% have brown eyes and 15% have both		
	brown hair and brown eyes. A person is selected at random from the town.		
	i) If he has brown hair, determine the probability that he has brown eyes also?		
	ii)If he has brown eyes, determine the probability that he does not have brown hair?	[L5][CO1]	[8M]
1. \			[OIVE]
b)	The probability that students A, B, C, D solve the problem are $\frac{1}{3}$, $\frac{2}{5}$, $\frac{1}{5}$ and $\frac{1}{4}$		
	respectively If all of them try to solve the problem, what is the probability that the		
	problem is solved.	[L1][CO1]	[4M]
7.	Two dice are thrown. Let A be the event that the sum of the point on the faces is 9.		
	Let B be the event that at least one number is 6. Find (i) $P(A \cap B)$ (ii) $P(A \cup B)$		
	(iii) $P(A^c \cup B^c)$ (iv) $P(A^c \cap B^c)$ (v) $P(A^c \cap B)$	[L1][CO1]	[6M]

R19

8. a)	Determine (i) $P(B/A)$ (ii) $P(A/B^C)$ if A and B are events with $P(A) = \frac{1}{3}$, $P(B) = \frac{1}{4}$,			
	$P(A \cup B) = \frac{1}{2}.$	[L5][CO) 1]	[6M]
b)	A businessman goes to hotel X, Y, Z, 20%, 50%, 30% of the time respectively. It is			
	known that 5%, 4%, 8% of the rooms in X, Y, Z hotels have faulty plumbing what is			
	the probability that businessman's room having faulty plumbing is assigned to hotel Z	[L1][CO) 1]	[6M]
9.	In a certain college 25% of boys and 10% of girls are studying mathematics. The girls Constitute 60% of the student body. (a) What is the probability that			
	mathematics is being studied? (b) If a student is selected at random and is found to			
	be studying mathematics, find the probability that the student is a girl (c) a boy.			
		[L1][CO) 1]	[12M]
10.	In a bolt factory machines A, B, C manufacture 20%,30% and 50% of the total of			
	their output and 6%,3% and 2% are defective. A bolt is drawn at random and found			
	to be defective. Find the probabilities that it is manufactured from (i) Machine A (ii) Machine B (iii) Machine C	II 11100	111	F4.03.67
	(II) Machine D (III) Machine C)]]	[12M]

$\frac{UNIT-II}{\text{NUMERICAL SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS \& INTERPOLATION}}$

1.	By using Bisection method to find the square root of 25, when $x_0 = 2.0$, $x_1 = 7.0$	[L3][CO2]	[12M]
2.	By applying Bisection method to find a positive root of $x^3-x-1=0$ correct to two		
	decimal places.	[L3][CO2]	[12M]
3.	Find a positive root of $f(x)=e^x$ -3 correct to two decimal places by Bisection method.	[L1][CO2]	[12M]
4.	Find a real root of the equation $xe^x - \cos x = 0$ using Newton – Raphson method.	[L1][CO2]	[12M]
5.	Using Newton-Raphson method (i) Find square root of 28 (ii) Find cube root of 15	[L3][CO2]	[12M]
6. a)	Using Newton-Raphson method to value the reciprocal of 12	[L3][CO2]	[6M]
b)	Find a real root of the equation $xtanx+1=0$ using Newton – Raphson method.	[L1][CO2]	[6M]
7.	Determine the root of the equation $x\log_{10}(x)=1.2$ using False position method.	[L5][CO2]	[12M]
8	What is the root of the equation $xe^x = 2$ using Regula-falsi method.	[L1][CO2]	[12M]
9	From the following table values of x and $y=tan x$. Find the values of y when $x=0.12$		
	and $x=0.28$.		
	x 0.10 0.15 0.20 0.25 0.30 y 0.1003 0.1511 0.2027 0.2553 0.3093	[L1][CO2]	[12M]
10. a)	Using Newton's forward interpolation formula and the given table of values $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[L3][CO2]	[6M]
	J(//////	[L3][CO2]	[6M]

<u>UNIT -III</u> NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS & NUMERICAL INTEGRATION

1.	Tabulate $y(0.1)$, $y(0.2)$ and $y(0.3)$ using Taylor's series method given that		
	$y^1 = y^2 + x$ and $y(0) = 1$	[L2][CO3]	[12M]
2.	Using Taylor's series method find an approximate value of y at $x = 0.2$ for the D.E y^1 - $2y = 3e^x$, $y(0) = 0$. Compare the numerical solution obtained with exact solution.	[L3][CO3]	[12M]
3. a)	Solve $y^1 = x + y$, given y (1)=0 find y(1.1) and y(1.2) by Taylor's series method.	[L3][CO3]	[6M]
b)	Solve by Euler's method $\frac{dy}{dx} = \frac{2y}{x}$ given y(1)=2 and find y(2)	[L3][CO3]	[6M]
4.	Applying Euler's method, find an approximate value of y corresponding to $x = 1$		
	given that $\frac{dy}{dx} = x + y$ and $y = 1$ when $x = 0$ taking step size h=0.1	[L3][CO3]	[12M]
5. a)	Using Euler's method $y^l = y^2 + x$, $y(0)=1$. Find $y(0.1)$ and $y(0.2)$	[L3][CO3]	[6M]
b)	Using Runge–Kutta method of fourth order, compute $y(0.2)$ from $y^1 = xyy(0)=1$,		
	taking h=0.2	[L3][CO3]	[6M]
6.	Using R-K method of 4 th order, solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$, y(0)=1. Find y(0.2) andy(0.4).	[L3][CO3]	[12M]
7.	Using R-K method of 4 th order find y(0.1),y(0.2) and y(0.3) given that		
	$\frac{dy}{dx}=1+xy, \ y(0)=2.$	[L3][CO3]	[12M]
8.	Solve $y'' - x(y')^2 + y^2 = 0$ using R-K method of 4 th order for $x = 0.2$ given $y(0) = 1$, And $y^1(0) = 0$ taking h=0.2	[L6][CO3]	[12M]
9.	Evaluate $\int_{0}^{1} \frac{1}{1+x} dx$ (i) by Trapezoidal rule and Simpson's $\frac{1}{3}$ rule.		
	(ii) Using Simpson's $\frac{3}{8}$ rule and compare the result with actual value.	[L5][CO3]	[12M]
10. a)	Calculate $\int_{0}^{4} e^{x} dx$ by Simpson's $\frac{3}{8}$ rule with 12 sub divisions.	[L3][CO3]	[6M]
b)	Evaluate $\int_{3}^{7} x^{2} \log x dx$ using Trapezoidal rule and Simpson's $\frac{1}{3}$ rule by taking 10 sub		
	divisions.	[L5][CO3]	[6M]

<u>UNIT –IV</u> LAPLACE TRANSFORMS

1. a)	Determine the Laplace transform of	FT 5315GO 43	50.5
b)	$f(t) = e^{3t} - 2e^{-2t} + \sin 2t + \cos 3t + \sinh 3t - 2\cosh 4t + 9.$ Find the Laplace transform of $f(t) = \cosh at \sin bt$	[L5][CO4] [L1][CO4]	[6M] [6M]
l l	Value the Laplace transform of $f(t) = \left(\sqrt{t} + \frac{1}{\sqrt{t}}\right)^3$.	[L5][CO4]	[6M]
	Find the Laplace transform of $f(t) = e^{4t} \sin 2t \cos t$.	[L1][CO4]	[6M]
	Find the Laplace transform of $f(t) = t^2 e^{2t} \sin 3t$	[L1][CO4]	[6M]
b)	Find the Laplace transform of $f(t) = \frac{1 - \cos at}{t}$	[L1][CO4]	[6M]
4. a)	What is the Laplace transform of $f(t) = \int_{0}^{t} e^{-t} \cos t dt$?	[L1][CO4]	[6M]
b)	What is the Laplace transform of $f(t) = e^{-4t} \int_0^t \frac{\sin 3t}{t} dt$.	[L1][CO4]	[6M]
5. a)	Show that $\int_{0}^{\infty} t^2 e^{-4t}$. sin $2t dt = \frac{11}{500}$, Using Laplace transform.	[L4][CO4]	[6M]
b)	Using Laplace transform, evaluate $\int_{0}^{\infty} \frac{\cos at - \cos bt}{t} dt$.	[L3][CO4]	[6M]
6. a)	Find $L^{-1}\left\{\frac{3s-2}{s^2-4s+20}\right\}$ by using first shifting theorem.	[L1][CO4]	[6M]
b)	Find $L^{-1} \left\{ \log \left(\frac{s-a}{s-b} \right) \right\}$	[L1][CO4]	[6M]
7. a)	Determine $L^{-1}\left\{\frac{1}{\left(s^2+5^2\right)^2}\right\}$, using Convolution theorem.	[L5][CO4]	[6M]
	Evaluate $L^{-1}\left\{\frac{s^2}{\left(s^2+4\right)\left(s^2+25\right)}\right\}$, using Convolution theorem.	[L5][CO4]	[6M]
8. a)	Find the Inverse Laplace transform of $\frac{1}{s(s^2 + a^2)}$	[L1][CO4]	[6M]
b)	Find $L^{-1} \left\{ s \log \left(\frac{s-1}{s+1} \right) \right\}$	[L1][CO4]	[6M]
9.	Applying Laplace transform method to solve $y^{11} - 3y^1 + 2y = 4t + e^{3t}$ where $y(0) = 1, y^1(0) = 1$	[L3][CO4]	[12M]
10.	Solve the D.E. $\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + x = 3te^{-t}$ using Laplace Transform given that		
	$x(0) = 4; \frac{dx}{dt} = 0.at, t = 0$	[L6][CO4]	[12M]

Course Code: 19HS0832

<u>UNIT -V</u> Z - TRANSFORMS

4 \	A 1 ' 1' ' C C 1 1 77 . C C 11 ' C . C	I	<u> </u>
1. a)	Applying linearity property, find the Z –transforms of the following functions	[] 2][[05]	[(N / []
	(i) $an^2 + bn + c$ (ii) $(n-1)^2$	[L3][CO5]	[6M]
b)	Determine the value of $Z[(-2)^n]$	[L5][CO5]	[6M]
2 a)	$\operatorname{Find} \left(\mathbf{Z} \right) = 1$	[L1][CO5]	[6M]
2. (a)	Find $Z\left\{\frac{1}{n(n+1)}\right\}$		
b)	Find Z –transform of the following (i) e^{-an} (ii) ne^{-an} (iii) n^2e^{-an} (iv) na^n	[L1][CO5]	[6M]
3. a)	Calculate the value of $Z\left\{\frac{1}{(n+2)(n+1)}\right\}$	[L3][CO5]	[6M]
	Find $Z\left\{\frac{1}{(n+2)(n-1)}\right\}$	[L1][CO5]	[6M]
4.	Determine the value of Z(cosnt) and Z(sinnt). Hence find (i) Z(n cosnt) (ii) Z(n sinnt)	[L5][CO5]	[12M]
5. a)	If $f(z) = \frac{5z^2 + 3z + 12}{(z-1)^4}$, What are the values of $f(2)$ and $f(3)$?	[L1][CO5]	[6M]
	If $Z Z[f(n)] = \frac{z}{z-1} + \frac{z}{z^2+1}$, find $Z[f(n+2)]$	[L1][CO5]	[6M]
6. a)	Evaluate $Z^{-1} \left[\frac{z^2}{(z-1)(z-3)} \right]$, Using Convolution theorem.	[L5][CO5]	[6M]
b)	Compute the value of $Z^{-1}\left[\left(\frac{z}{z-a}\right)^2\right]$, Using Convolution theorem.	[L3][CO5]	[6M]
	Find $Z^{-1}\left[\frac{z}{z^2+11z+24}\right]$	[L1][CO5]	[6M]
b)	Find the inverse Z –transform of $\frac{2z^2 + 3z}{(z+2)(z-4)}$	[L1][CO5]	[6M]
8. a)	Give the value of $Z^{-1} \left[\frac{z}{z^3 - 7z^2 + 14z - 8} \right]$	[L1][CO5]	[6M]
b)	Find $Z^{-1}\left[\frac{1}{(z-\frac{1}{2})(z-\frac{1}{3})}\right]$ if $\frac{1}{3}\angle z \angle\frac{1}{2}$	[L1][CO5]	[6M]
9	Solve $y_{n+2} + 2y_{n+1} + y_n = n$. Using the Z-transform given that $y_0 = y_1 = 0$	[L6][CO5]	[12M]
10	Applying the Z –transform, solve $y_{n+2} - 6y_{n+1} + 8y_n = 2^n + 6n$	[L3][CO5]	[12M]
		L	l

Prepared by: Dept. of Mathematics